Materiali metallici - Raggruppamento degli acciai

Stimati clienti,

il raggruppamento dei materiali qui di seguito riportato è il risultato della seguente richiesta che ci perviene regolarmente da parte dei clienti.

"Al momento stiamo eseguendo una prova di procedura. Questa prevede la saldatura del materiale d'apporto Böhler NiMo 1-IG. I metalli base da fondere sono S460ML con S500QL1. In quale gruppo di metalli rientrano questi metalli base?"

La risposta a questa domanda richiede senz'altro una determinata conoscenza dei metalli base e delle rispettive norme. Visto che qui si evince chiaramente la necessità di una tabella utilizzabile praticamente, abbiamo deciso di crearne una aiutandoci con i corrispettivi regolamenti tecnici. Nel redigere tale tabella abbiamo seguito il seguente filo conduttore:

- L'elencazione funge da base ai sensi della norma CR ISO 15608 anche se la tabella è stata integrata di un'ulteriore colonna per i rispettivi metalli base visto che il saldatore può cominciare ben poco con i testi riportati nella colonna 3 (tipologia di acciaio).
- Nella nuova colonna dunque (colonna 4) sono stati riportati tutti i possibili tipi di acciaio che si possono incontrare nella pratica lavorativa quotidiana.

- Per alcuni gruppi di metalli (p. es. 11.1 a 11.3) abbiamo pensato di aggiungere dei commenti personali che potranno tornare utili al saldatore durante il suo lavoro.
- Gli acciai non legati e quelli basso legati indicati nella colonna 4 sono stati indicati con le loro designazioni convenzionali.
- Per quanto concerne gli acciai medio legati si è ricorso per la loro definizione sia alla designazione convenzionale che alla designazione numerica visto che nella pratica lavorativa vengono spesso impiegati entrambi.
- Gli acciai alto legati inossidabili sono stati indicati con la designazione numerica nonché all'interno di ciascun gruppo i metalli sono stati ordinati secondo una sequenza crescente delle designazioni numeriche per facilitare la ricerca.
- Gli acciai cui si aggiungono determinate quantità di zolfo al fine di migliorarne la truciolabilità non li raccomandiamo per costruzioni saldate. Per questa ragione li abbiamo tralasciati.

Saldatura - Raggruppamento dei materiali metallici					
Tabella 1 Raggruppamento degli acciai					
Gruppo	Sotto- gruppo	Tipo di acciaio	Acciai rientranti nel rispettivo sottogruppo		
	Acciai con una ReH ≤ 460 MPa (a) e seguente analisi				
	$C \le 0.25 \text{ (d)} / \text{Si} \le 0.60 / \text{Mn} \le 1.8 / \text{S} \le 0.045 / \text{P} \le 0.045 / \text{Mo} \le 0.70 \text{ (b)} / \text{Cu} \le 0.40 \text{ (b)} / \text{Ni} \le 0.5 \text{ (b)} / \text{Cr} \le 0.3 \text{ (0,4 per metalli colati)} \text{ (b)} / \text{Nb} \le 0.06 / \text{V} \le 0.1 \text{ (b)} / \text{Ti} \le 0.05 \text{ (b)} / \text{Ni} = 0.05 ($				
1	1.1	Acciai con ReH ≤275 MPa	\$235JR/J0/J2 / \$275JR/J0/J2 / P195GH-P265GH / P275N/NH/NL1/NL2 / \$275N/NL/M/ML / L245NB/MB / 16Mo3 (1.5415) / C10 / C15 / C15 R / C15 R / C16 / C22 / C22E / C22R / E155 / E190 / E195 / E215 / E220 / E235 / E260 / E275 / E275K2 / E275M / L210GA / L235 / L235GA / L245GA / L245MB / L245NB / L275 / P195TR1/TR2 / P215NL / P235TR1/TR2 / P245NB+P265NB / P255QL / P265NL / P265TR1/TR2 / G17Mn5 (1.1131) / G18Mo5 (1.5422) / G20Mn5 (1.6220) / GP240GH / GP240GR «		
	1.2	Acciai con 275 MPa <reh mpa<="" td="" ≤360=""><td>\$355JR/J0/J2/K2 / P265-355GH / P355N/NH/NL1/NL2 / \$355N/NL / P315+355NB / \$315NC / \$315 / L299+L360GA / GP280GH / G20Mn5 / G18Mo5 / 20Mn5 (1.133) / 20MnNb6 (1.0471) / C25 / C25E / E295GC / E315 / E320 / E335GC / E355 / E355SC / E355 / L290GA / L290MB / L290MB / L355 / L360NB / L360NB / L360QB / P285NH/QH / P310NB / P355NB / P355NH / P355Q/QH/QH1 / P355QL1/QL2 / \$320GP / \$355G1 / \$355Q1+NH/NH/NH/H / P355Q/GH/QL1/QL2 / \$355N1/N2/N3 / P285NH/QH / P355NH/QH / P355NH/QH / P355NH/QH / P355NH/NL1/NL2 / 15MnMoV4-5 (1.5402)</td></reh>	\$355JR/J0/J2/K2 / P265-355GH / P355N/NH/NL1/NL2 / \$355N/NL / P315+355NB / \$315NC / \$315 / L299+L360GA / GP280GH / G20Mn5 / G18Mo5 / 20Mn5 (1.133) / 20MnNb6 (1.0471) / C25 / C25E / E295GC / E315 / E320 / E335GC / E355 / E355SC / E355 / L290GA / L290MB / L290MB / L355 / L360NB / L360NB / L360QB / P285NH/QH / P310NB / P355NB / P355NH / P355Q/QH/QH1 / P355QL1/QL2 / \$320GP / \$355G1 / \$355Q1+NH/NH/NH/H / P355Q/GH/QL1/QL2 / \$355N1/N2/N3 / P285NH/QH / P355NH/QH / P355NH/QH / P355NH/QH / P355NH/NL1/NL2 / 15MnMoV4-5 (1.5402)		
	1.3	Acciai da costruzione a grano fine allo stato normalizzato con ReH >360 MPa	P420NH / P460N/NH/NL1/NL2 / S420N/NL / S460N/NL / P460N/NH/NL1/NL2 / S390+430GP / 25Mn4 (1.1177) / E370 / E420 / E420J2 / E420M / E460K2 / E460M / E470 / L415NB / S460G3 / S460G4		
	1.4	Acciai altamente resistenti alla corrosione atmosferica (p. es. Corten / Patinax)	\$235J0W / \$275J2W / \$355J0W / \$355J2W / \$355K2W / \$355J0WP / \$355J2WP / \$355J2G1W / \$355J2G2W / \$355K2G1W / \$355K2G2W		
2	Acciai da costruzione a grano fine TM e acciaio colato con ReH > 360 MPa				
	2.1	Acciai da costruzione a grano fine TM e acciaio colato con 360 MPa <reh mpa<="" td="" ≤460=""><td>P355M/ML/ML1 / S355M/ML / S355MC / L360MB / S355MH/MLH / S355M1/M2/M3 / P420-460M/ ML1/ML2 / S420-460M/ML / S420-460MC / L415-450MB / S420-460MH/MLH / L415MB / S460G1+M / S460G2+M / S460G3+M / S460G4+M «</td></reh>	P355M/ML/ML1 / S355M/ML / S355MC / L360MB / S355MH/MLH / S355M1/M2/M3 / P420-460M/ ML1/ML2 / S420-460M/ML / S420-460MC / L415-450MB / S420-460MH/MLH / L415MB / S460G1+M / S460G2+M / S460G3+M / S460G4+M «		
	2.2	Acciai da costruzione a grano fine TM e acciaio colato con ReH >460 MPa	S550-700MC / L485-555MB		
	Acciai da costruzione a grano fine bonificati e a indurimento per precipitazione con ReH > 360 MPa				
3	3.1	Acciai da costruzione a grano fine bonificati con 360 MPa <reh mpa<="" th="" ≤690=""><th>P460-500Q/QH/QL1/QL2 / S460-550Q/QL/QL1 / L415-550QB / P420QH / G20Mn5 / P500-690Q/QH/QL1/QL2 / S620+690Q/QL1/QL1 / 25CrMo4 / P620+690Q/QH/QL1/QL2 / S460G1+Q / S460G2+Q / S460G5+Q / S460G6+Q / G20Mo5 (1.5419)»</th></reh>	P460-500Q/QH/QL1/QL2 / S460-550Q/QL/QL1 / L415-550QB / P420QH / G20Mn5 / P500-690Q/QH/QL1/QL2 / S620+690Q/QL1/QL1 / 25CrMo4 / P620+690Q/QH/QL1/QL2 / S460G1+Q / S460G2+Q / S460G5+Q / S460G6+Q / G20Mo5 (1.5419)»		
	3.2	Acciai da costruzione a grano fine bonificati con ReH >690 MPa	S890Q/QL/QL1 / S960Q/QL		
	3.3	Acciai da costruzione a grano fine a indurimento per precipitazione	S500-690A/AL		
4	Acciai Cr-Mo-(Ni) a basso vanadio con Mo ≤ 0,7 % und V ≤ 0,1 %				
	4.1	Acciai con Cr ≤0,3 % e Ni ≤0,7 %	18MnMoNi5-5 (1.6308) / 20NiCrMo2-2 (1.6523) / 15MnCrMoNiV5-3 (1.6920)		
	4.2	Acciai con Cr ≤0,7 % e Ni ≤1,5 %	15NiCuMoNb5-6-4 (1.6368) / 34CrNiMo6 (1.6582)		

09.07 Materiali metallici - Raggruppamento degli acciai | Pagina 1 di 2 | Situazione: 2017-02-03

			ruppamento dei materiali metallici Raggruppamento degli acciai		
	Sotto-	Tabella I F	raggruppamento degli accial		
Gruppo	gruppo	Tipo di acciaio	Acciai rientranti nel rispettivo sottogruppo		
	Acciai Cr-I	Mo privi di vanadio con C ≤ 0,35 %			
5	5.1	Acciai con 0,75 % ≤Cr ≤1,5 % e Mo ≤0,7 %	13CrMo4-5 (1.7335) / G17CrMo5-5 (1.7357) / 10CrMo5-5 (1.7338) / 25CrMo4 (1.7218) / 26CrMo4-2 (1.7219)		
	5.2	Acciai con 1,5 % <cr %="" e<br="" ≤3,5="">0,7 % <mo %<="" td="" ≤1,2=""><td>10CrMo9-10 (1.7380) / 11CrMo9-10 (1.7383) / G17CrMo9-10 (1.7379) / 24CrMo13-6 (1.8516)</td></mo></cr>	10CrMo9-10 (1.7380) / 11CrMo9-10 (1.7383) / G17CrMo9-10 (1.7379) / 24CrMo13-6 (1.8516)		
	5.3	Acciai con 3,5 % <cr %="" e<br="" ≤7,0="">0,4 % <mo %<="" td="" ≤0,7=""><td>X12CrMo5 / GX15CrMo5 (1.7365) / X11CrMo5+L (1.7362) / X11CrMo5+NT1/NT2 (1.7362) / X16CrMo5-1 (1.7366)</td></mo></cr>	X12CrMo5 / GX15CrMo5 (1.7365) / X11CrMo5+L (1.7362) / X11CrMo5+NT1/NT2 (1.7362) / X16CrMo5-1 (1.7366)		
	5.4	Acciai con 7,0 % <cr %="" e<br="" ≤10,0="">0,7 % <mo %<="" td="" ≤1,2=""><td>X11CrMo9-1+L (1.7386) / X11CrMo9-1+NT (1.7386)</td></mo></cr>	X11CrMo9-1+L (1.7386) / X11CrMo9-1+NT (1.7386)		
	Acciai Cr-Mo-(Ni) ad alto vanadio				
	6.1	Acciai con 0,3 % ≤Cr ≤0,75 %, Mo ≤0,7 % e V ≤0,35 %	G12CrMoV5-2 (1.7720) / 14MoV6-3 (1.7715)		
6	6.2	Acciai con 0,75 % <cr %,<br="" ≤3,5="">0,7 % <mo %="" %<="" e="" td="" v="" ≤0,35="" ≤1,2=""><td>G17CrMoV5-10 (1.7706)</td></mo></cr>	G17CrMoV5-10 (1.7706)		
	6.3	Acciai con 3,5 % <cr %,<br="" ≤7,0="">Mo ≤0,7 % e 0,45 % ≤V ≤0,55 %</cr>	20CrMoV13-5-5 (1.7779)		
	6.4	Acciai con 7,0 % <cr %,<br="" ≤12,5="">0,7 % <mo %="" %<="" e="" td="" v="" ≤0,35="" ≤1,2=""><td>X10CrMoVNb9-1 (1.4903) / X20CrMoV12-1 / GX23CrMoV12-1 (1.4931) / X10CrMoVNb9-1 / X20CrMoV11-1 (1.4922) / X22CrMoV12-1 (1.4923)</td></mo></cr>	X10CrMoVNb9-1 (1.4903) / X20CrMoV12-1 / GX23CrMoV12-1 (1.4931) / X10CrMoVNb9-1 / X20CrMoV11-1 (1.4922) / X22CrMoV12-1 (1.4923)		
	Acciai inos	ssidabili ferritici, martensitici o a indurimento per pr	ecipitazione con C ≤ 0,35 % + 10,5% ≤ Cr ≤ 30%		
7	7.1	Acciai inossidabili ferritici	1.4000 / 1.4002 / 1.4003 / 1.4016 / 1.4017 / 1.4113 / 1.4509 / 1.4510 / 1.4511 / 1.4512 / 1.4513 / 1.4516 / 1.4520 / 1.4521 / 1.4526 / 1.4589 / 1.4590 / 1.4592 / 1.4595 / 1.4605 / 1.4724 / 1.4736 / 1.4742 / 1.4749 / 1.4762		
1	7.2	Acciai inossidabili martensitici	1.4006 / 1.4021 / 1.4024 / 1.4028 / 1.4031 / 1.4034 / 1.4057 / 1.4107 / 1.4110 / 1.4116 / 1.4122 / 1.4123 / 1.4313 / 1.4317 / 1.4405 / 1.4415 / 1.4418 / 1.4419 / 1.4422 / 1.4423 / 1.4913 / 1.4935 / 1.4938 / 1.6982		
	7.3	Acciai inossidabili a indurimento per precipitazione	1.4530 / 1.4542 / 1.4568 / 1.4594 / 1.4596 / 1.4606		
	Acciai inossidabili austenitici, Ni ≤ 35 %				
8	8.1	Acciai inossidabili austenitici con Cr ≤19 %	1.4301 / 1.4303 / 1.4305 / 1.4306 / 1.4307 / 1.4308 / 1.4309 / 1.4310 / 1.4311 / 1.4315 / 1.4318 / 1.4319 / 1.4325 / 1.4361 / 1.4401 / 1.4406 / 1.4406 / 1.4409 / 1.4429 / 1.4422 / 1.4432 / 1.4432 / 1.4432 / 1.4432 / 1.4438 / 1.4439 / 1.4449 / 1.4541 / 1.4550 / 1.4552 / 1.4560 / 1.4567 / 1.4571 / 1.4578 / 1.4580 / 1.4581 / 1.4650 / 1.4818 / 1.4910 / 1.4912 / 1.4918 / 1.4918 / 1.4919 / 1.4940 / 1.4941 / 1.4945 / 1.4948 / 1.4961 / 1.4962 / 1.4980 / 1.4983 / 1.4986 / 1.4988		
	8.2	Acciai inossidabili austenitici con Cr > 19 %	1.4335 / 1.4458 / 1.4466 / 1.4529 / 1.4537 / 1.4539 / 1.4547 / 1.4558 / 1.4659 / 1.4563 / 1.4565 / 1.4828 / 1.4833 / 1.4835 / 1.4841 / 1.4845 / 1.4872 / 1.4950 / 1.4951 / 1.4958 / 1.4959 / 1.4971		
	8.3	Acciai inossidabili austenitici a contenuto di Mn con 4 % <mn %<="" td="" ≤12=""><td>1.4369 / 1.4371 / 1.4372 / 1.4373 / 1.4374 / 1.4597</td></mn>	1.4369 / 1.4371 / 1.4372 / 1.4373 / 1.4374 / 1.4597		
	Acciai lega	ati al nichel con Ni ≤ 10,0 %			
	9.1	Acciai legati al nichel con Ni ≤3,0 %	11MnNi5-3 (1.6212) / 13MnNi6-3 (1.6217) / 15NiMn6 (1.6228) / G9Ni10 (1.5636)		
9	9.2	Acciai legati al nichel con 3,0 % <ni %<="" td="" ≤8,0=""><td>12Ni14 (1.5637) / 12Ni19=X12Ni5 (1.5680) / G9Ni14 (1.5638) / G17NiCrMo13-6 (1.6781) / X12Ni5 (1.5680) «</td></ni>	12Ni14 (1.5637) / 12Ni19=X12Ni5 (1.5680) / G9Ni14 (1.5638) / G17NiCrMo13-6 (1.6781) / X12Ni5 (1.5680) «		
	9.3	Acciai legati al nichel con 8,0 % <ni %<="" td="" ≤10,0=""><td>X8Ni9 (1.5662) / X7Ni9 (1.5663) / X10Ni9 (1.5682)</td></ni>	X8Ni9 (1.5662) / X7Ni9 (1.5663) / X10Ni9 (1.5682)		
	Acciai inos	ssidabili austeno-ferritici (Duplex)			
10	10.1	Acciai duplex con Cr ≤ 24 %	1.4362 / 1.4424 / 1.4462 / 1.4470 / 1.4655		
10	10.2	Acciai duplex con Cr > 24 %	1.4410 / 1.4460 / 1.4469 / 1.4477 / 1.4501 / 1.4507 / 1.4517 / 1.4821		
	10.3	Acciai duplex con Ni ≤ 2 %	1.4410 / 1.4460 / 1.4469 / 1.4501 / 1.4507 / 1.4517		
	Acciai del	1°gruppo (c) ad eccezione di 0,25 % < C ≤ 0,85 % Acciai come indicati al punto 11 con 0,25 % <c %<="" td="" ≤0,35=""><td>I materiali con un tenore di carbonio >0,2% sono generalmente considerati difficili da saldare, e non sono quindi consigliati per strutture saldate. Con dei materiali d'apporto speciali, e tenendo conto di una procedura speziale, possono essere eseguite saldature di riparazione su tali acciai in casi eccezionali. 1.0501, C35 / 1.0528, C30 / 1.1180, C35R / 1.1181, CK35 / 1.5531, 30MnB5 / 27MnCrB5-2 (1.7182)</td></c>	I materiali con un tenore di carbonio >0,2% sono generalmente considerati difficili da saldare, e non sono quindi consigliati per strutture saldate. Con dei materiali d'apporto speciali, e tenendo conto di una procedura speziale, possono essere eseguite saldature di riparazione su tali acciai in casi eccezionali. 1.0501, C35 / 1.0528, C30 / 1.1180, C35R / 1.1181, CK35 / 1.5531, 30MnB5 / 27MnCrB5-2 (1.7182)		
11	11.2	Acciai come indicati al punto 11 con 0,35 % <c %<="" td="" ≤0,5=""><td>I materiali con un tenore di carbonio >0,35% sono generalmente considerati molto difficile da saldari in sequenza non devono essere utilizzati per le costruzioni saldate. 1.0511, C40 / 1.1127, 38Mn6 / 1.1186, CK40 / 1.1189, C40R / 1.1201, C45R</td></c>	I materiali con un tenore di carbonio >0,35% sono generalmente considerati molto difficile da saldari in sequenza non devono essere utilizzati per le costruzioni saldate. 1.0511, C40 / 1.1127, 38Mn6 / 1.1186, CK40 / 1.1189, C40R / 1.1201, C45R		
	11.3	Acciai come indicati al punto 11 con 0,5 % <c %<="" td="" ≤0,85=""><td>Per i materiali con un tenore di carbonio superiore allo 0,5%, esistono connessioni affidabili provati industrialmente, per esempio avvitatura. 1.0535, C55 / 1.0601, C60 / 1.1206, CK50 / 1.1209, C55R / 1.1221, CK60</td></c>	Per i materiali con un tenore di carbonio superiore allo 0,5%, esistono connessioni affidabili provati industrialmente, per esempio avvitatura. 1.0535, C55 / 1.0601, C60 / 1.1206, CK50 / 1.1209, C55R / 1.1221, CK60		
DSSERV/	AZIONI:		ssibile classificare gli acciai del 2° gruppo come acciai del 1° gruppo. Nel caso in cui un materiale presen re del materiale è necessario adoperare il valore massimo per la determinazione del sottogruppo.		
(a)		rmonia con le indicazioni delle norme sui materiali, la ReH può essere sostituita da Rp0,2 oppure Rp0,5			
(b)	Un valore maggiore è consentito premesso che Cr + Mo + Ni + Cu + V sia ≤ 0,75 % ist.				
(c)	Un valore maggiore è consentito premesso che $Cr + Mo + Ni + Cu + V$ sia ≤ 1 % ist.				
(d)	Un valore maggiore è consentito premesso che Cr + Mo + Ni + Cu + V sia ≤1 % e CE (IIW) sia ≤0,55. Il valore CE (IIW) è definito nella norma ISO/TR 17671-2				

Le informazioni riportate in questa tabella sono state redatte con la massima accuratezza al momento della pubblicazione di questo prospetto. La tabella $non\ da\ alcuna\ garanzia\ sulla\ completezza\ e\ l'assoluta\ correttezza\ delle\ informazioni\ riportate\ al\ momento\ della\ sua\ applicazione.\ In\ caso\ di\ dubbio\ si$ $prega\ di\ consultare\ i\ rispettivi\ regolamenti\ nella\ loro\ versione\ attuale.\ La\ voestalpine\ B\"{o}hler\ Welding\ esclude\ qualsiasi\ responsabilit\`{a},\ prestazione\ e$ garanzia in relazione alla correttezza e completezza delle informazioni fornite e per qualsivoglia conseguenza derivante dall'uso delle dette informazioni.

09.07 Materiali metallici - Raggruppamento degli acciai | Pagina 2 di 2 | Situazione: 2017-02-03

Queste informazioni sono indicative per l'artigiano. Essi descrivono delle circostanze tecniche fondamentali semplificate e non sono esaustive.

La garanzia delle qualifiche per ogni utilizzo/messa in opera richiede un accordo scritto anticipatamente.

